IMPACT
Allein die Schifffahrt ist aktuell für den Ausstoß von rund 1,1 Milliarden Tonnen CO2 (rund drei Prozent der globalen CO2-Emissionen) sowie weiterer gesundheitsschädlicher Luftschadstoffe wie Schwefel- und Stickoxide oder Feinstaub verantwortlich. Durch den Ersatz fossilen Öls durch regenerative Schiffskraftstoffe lässt sich daher jedes Jahr mehr als eine Gigatonne CO2 einsparen. Für Container-Schiffe setzt sich grünes Methanol aktuell als klimaneutrale Treibstoffalternative in der Anwendung durch.
Die heutige Produktion von Methanol beruht auf einem einhundert Jahre alten, technisch ausgereizten und emissionslastigen Herstellungsverfahren basierend auf fossilem Erdgas oder Kohle. C1 Green Chemicals hat in Zusammenarbeit mit CreativeQuantum und dem Leibniz-Institut für Katalyse e. V. (LIKAT) einen neuen, hocheffizienten Katalysator entwickelt, der dieses Verfahren revolutioniert. Dieser ermöglicht die wirtschaftliche Produktion von grünem Methanol aus nicht-fossilen Rohstoffen wie Biomasse oder CO2. Das Verfahren ermöglicht eine Methanolwirtschaft, bei der der eingesetzte Kohlenstoff in einem kontinuierlichen Kreislauf genutzt wird, anstatt zusätzliche CO2-Emissionen zu erzeugen.
Ziel von Leuna100 ist die marktreife und skalierbare Herstellung grünen Methanols für die Schiff- und Luftfahrt.
Technologie
Für den Markthochlauf des E-Methanol-Verfahrens müssen einzelne Prozessschritte und insbesondere ihre Kopplung zu einem Gesamtprozess optimiert und skaliert werden. Ziel des Projektes ist die weltweit erstmalige Realisierung des Gesamtprozesses aus strombasierter Synthesegas-Erzeugung und einer grundlegend neu entwickelten Methanolsynthese unter Realbedingungen.
Die C1 Green Chemicals AG stellt den neuen Katalysator sowie den eigens entwickelten und mit der Firma OilRoq aus Halle (Saale) realisierten Reaktor zur homogenen Katalyse von Methanol zur Verfügung. Dieser wird an zwei unterschiedliche Technologien zur CO2-basierten Erzeugung von Synthesegas als Eingangsstoff gekoppelt: Fraunhofer UMSICHT liefert eine neue Niedertemperatur-Co-Elektrolyse, DBI - Gastechnologisches Institut gGmbH Freiberg setzt eine Reverse-Water-Gas-Shift-Anlage ein. Fraunhofer IWES stellt den Standort und die Infrastruktur vor Ort im Hydrogen Lab Leuna zur Verfügung und evaluiert die Lastflexibilität der Komponenten und des Gesamtprozesses. Die TU Berlin entwickelt ein effizientes Betriebskonzept auf Basis eines dynamischen Gesamtprozessmodell und erstellt anwendungsnahe mathematische Methoden zur Bewertung und Optimierung der Lastflexibilität.
Eine zentrale Innovation ist neben der Option der strombasierten und lastflexiblen Nutzung der Synthesegaserzeugung die homogene Katalyse für die Methanolerzeugung selbst. Weltweit erstmalig kommt nicht wie bisher eine zweidimensionale Oberflächenreaktion mit Festkörperkatalysatoren (heterogene Katalyse) zum Einsatz, sondern die von C1 Green Chemicals (in Zusammenarbeit mit CreativeQuantum und LIKAT) entwickelte, dreidimensional skalierbare Reaktion in der flüssigen Phase (homogene Katalyse). Diese ist nicht nur hochselektiv, besser skalierbar und geeignet für einen lastflexiblen Betrieb, sondern bietet auch Kostenvorteile unabhängig von der Anlagengröße.
Das eingesetzte CO2 stammt aus industriellen Prozessemissionen. Mit der integrierten End-to-End-Prozesskette schafft “Leuna100” so die Voraussetzung für eine RED-II-konforme Produktion von grünem Methanol. Die abschließende Evaluation des produzierten Methanols auf seine Eignung als Schiffskraftstoff und zur weiteren Verarbeitung zu Kerosin stellt die Anwendbarkeit.
FÖRDERUNG
Das Projekt Leuna100 startet im August 2023 im Chemiepark Leuna und ist auf drei Jahre angelegt. Es wird im Rahmen des Gesamtkonzepts Erneuerbare Kraftstoffe mit insgesamt 10,4 Millionen Euro durch das Bundesministerium für Digitales und Verkehr gefördert. Die Förderrichtlinie für die Entwicklung regenerativer Kraftstoffe wird von der NOW GmbH koordiniert und durch die Projektträger VDI/VDE Innovation +Technik GmbH sowie die Fachagentur Nachwachsende Rohstoffe e. V. umgesetzt.
Konsortium
C1
Green Chemicals AG
C1 entwickelt neuartige chemische Produktionsprozesse, indem diese von der atomaren Ebene bis hin zum Produktionsmaßstab neu gedacht werden. Die chemischen Verfahren werden mit Hilfe quantenchemischer Simulationen konzipiert und zu firmeneigenen Produktionstechnologien umgesetzt. Das Berliner Unternehmen entwickelt und skaliert dabei ausschließlich auf Grundlage von regenerativen Rohstoffen und erneuerbarer Energie. Von den ersten Schritten der Entwicklung eines Produktionsprozesses an werden alle Prozesse so konzipiert, dass ein geschlossener Kohlenstoffkreislauf möglich ist. Damit unterstützt C1 die Industrie auf ihrem Weg aus der Abhängigkeit von fossilen Rohstoffen wie Öl, Gas und Kohle.
Mehr InfosDBI-Gastechnologisches
Institut gGmbH Freiberg
DBI-Gastechnologisches Institut gGmbH Freiberg ist als gemeinnützige Einrichtung aktiv im Bereich anwendungsorientierte F&E. Aus dem Status eines An-Instituts der TU Bergakademie Freiberg resultieren erhebliche Synergien. Insbesondere im Bereich des Transfers verfahrenstechnischer Prozesse vom Labor- in den Technikumsmaßstab ist DBI in mehreren Projekten führend. Hierbei kann auf eine Vielzahl erfolgreich abgeschlossener und laufender F&E-Projekte und ein breites Spektrum an Expertise der Mitarbeiter zurückgegriffen werden, u.a. im Engineering (Planung Projektierung, R&I-Fließbilderstellung, Elektroplanung, Prozesssicherheit, Automatisierung). Unterstützt wird dies durch F&E-Expertise im Bereich der Synthesegaserzeugung, wobei DBI mehrere Teststände zur Untersuchung reaktionstechnischer Prozesse sowie entsprechender Analysetechnik zur Verfügung stehen.
Mehr InfosFraunhofer
UMSICHT
Das Fraunhofer UMSICHT ist Wegbereiter in eine nachhaltige Welt. Mit unserer Forschung in den Bereichen klimaneutrale Energiesysteme, ressourceneffiziente Prozesse und zirkuläre Produkte leisten wir konkrete Beiträge zum Erreichen der 17 Sustainable Development Goals (SDGs) der Vereinten Nationen. Wir entwickeln innovative, industriell umsetzbare Technologien, Produkte und Services für die zirkuläre Wirtschaft und bringen diese mit aller Kraft zur Anwendung. Die Balance von wirtschaftlich erfolgreichen, sozial gerechten und umweltverträglichen Entwicklungen steht dabei im Fokus.
Mehr InfosFraunhofer
IWES
Das Fraunhofer IWES sichert Investitionen in technologische Weiter-entwicklungen durch Validierung ab, verkürzt Innovationszyklen, beschleunigt Zertifizierungsvorgänge und erhöht die Planungsgenauigkeit durch innovative Messmethoden im Bereich der Wind- und Wasserstofftechnologie.
Mehr InfosTU Berlin
Das Fachgebiet Dynamik und Betrieb technischer Anlagen der TUB beschäftigt sich intensiv mit der Modellierung, Simulation und der Optimierung für Design und Betrieb von vielfältigen Prozessen der Verfahrenstechnik. Dabei stehen Wirtschaftlichkeit, Energieeffizienz und Nachhaltigkeit im Fokus der Forschungsarbeiten. Neben der Systemverfahrenstechnik stellt die Grundlagenforschung auf dem Gebiet der Fluiddynamik und Trenneffizienz, wie in thermischen Trennverfahren anzutreffen, eine weitere Kernkompetenz dar. Am Fachgebiet werden vielfältige Anstrengungen im Bereich intensivierter Prozesse unternommen, wobei beispielsweise neuartige Konzepte zur homogenen Katalyse in innovativen schaltbaren Lösemittelsystemen (Mikroemulsionen) sowie neuartige Reaktor- und Betriebskonzepte für die heterogene Katalyse bis zur Prozessreife gebracht werden.
Forschungspartner
Leibniz-Institut für Katalyse e.V.,
Arbeitsgruppe Prof. Matthias Beller
Über 70 Jahre Katalyse-„Know How“ bildet die Basis des Leibniz-Instituts für Katalyse e.V. an der Universität Rostock (LIKAT). Das ursprünglich einzige ausschließlich der Katalyse gewidmete Institut, ist heute eines der größten öffentlich geförderten Forschungsinstitute im Bereich der angewandten Katalyse in Europa. Die Methoden- und Materialkompetenz der mehr als 300 Mitarbeiter konzentriert sich auf die Entwicklung ressourcenschonender Verfahren.
Mehr Infos